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I. INTRODUCTION

In a classification problem, a classical crisp decision tree
classifies examples characterized by a vector of predictor
variables (attributes) by dividing of the space of attributes
into distinct areas where the class assignment can be made
with a greater degree of certainty [1,2]. These areas are
determined by a succession of Boolean tests. Each of
these tests splits the data into two disjoint sets. The tree
can be viewed as a hierarchy of Boolean tests whose
parameters are determined by a succession of local
optimizations of a specified quality function (e.g. the
decrease of the impurity function [1], or the information
gain [2] brought about by the split). It is expected that this
greedy algorithm find a solution that is close to being
globally optimal.

One of the disadvantages of the knowledge
representation given by a crisp classification tree is that
the notion of locality is partially lost. In particular, two
examples that are very close to each other in attribute
space, but on opposite sides of a split defined by a
Boolean test are classified by separate branches of the
tree. In order to regain the notion of locality and to be
able to define a training algorithm that involves the
minimization of a global cost function, a fuzzy decision
tree can be constructed by replacing the Boolean tests in
the internal nodes of the tree by fuzzy tests whose
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outcome are real-valued degrees of membership [3]. This
means that points are split into sets that are not disjoint;

i.e. points may have a partial degree of membership to
each of the sets that are defined by the split. A first stage
of the classification process involves finding the
memberships of the test example in the leaves. Once these
values are computed, they are used to determine the final
class assignment by a weighted voting procedure that uses
the class labels produced by each of the leaves.

An additional advantage of the fuzzification algorithm
introduced in [3] is that it allows the quantification of the
margins associated to the classification of a given
example. In the recent literature, the question of
classification margins has been recognized as a key
element in the performance of some families of classifiers.
The classification margin can be intuitively defined as the
certainty with which a classification is made. Vapnik [4]
exploits this concept in the construction optimal margin
classifiers, which use the inductive principle that the best
classifiers are those with large minimal margins. In
particular, the following procedure is suggested: The
original classification problem is embedded in a high
dimensional space where the examples in the training set
are linearly separable. The margin is then defined in terms
of the minimal distance to the separating hyperplane for
points of different classes. The optimal separating
hyperplane is the one that maximizes the minimal margin.
One can also specify a similar algorithm and generalize
the concept of margins for the case where the problem is
not linearly separable even in the augmented space [4].

In the context of classification with ensembles of
decision trees [5-8], the concept of margins has been also
invoked to account for the performance of boosting
methods [8]. The objective of boosting [7] is to generate
an ensemble of classifiers, where the training examples
that are more difficult to classify are progressively given a
higher relevance in the construction of the "boosted"
trees. The classification is made by a weighted voting
procedure amongst the classifiers in the ensemble.
Margins are then defined in terms of the preponderance of
the majority class in the voting scheme [8].

In a fuzzy decision tree, owing to the fact that all tree
leaves are involved in the classification produced by the
tree, it is not necessary to generate an ensemble of
classifiers to be able to define margins. In a certain sense,
the conflicting class assignments given by the different
leaves of the tree correspond to the conflicting votes of
individuals in an ensemble of trees. Hence, a relative
measure for the margin of the classification of an example
can be given in terms of how diffuse its classification is.
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The correlation between small margins and high
inaccuracy in the classification can be understood in the
light of the following observation: Those points whose
classification involves several terminal nodes with
conflicting class assignments are in a region of attribute
space where a relevant split is being made. These regions
are in general zones where there is a non zero probability
of finding examples from different classes, either because
of overlapping class probability distributions, or due to
the presence of noise. In these regions the classification
problem is intrinsically more difficult. On the other hand,
when, in the classification of an example by a fuzzy
decision tree, the class assignment is made by a single leaf
node, or by a set of leaf nodes which produce the same
class prediction, one can be more confident of the
accuracy of the classification.

This observation has important consequences in
gaining understanding of the distribution of errors in
attribute space. The information could be used in various
ways: One can use it to  identify regions with an error rate
much lower or much higher than the average rate. The
classification of instances with a low fuzzy entropy will be
accepted as more accurate. On the other hand, examples
classified with a high fuzzy entropy can be handled
separately, either by a human expert, or by another
classifier whose bias is in a certain sense
"complementary" to the bias of the decision tree (i.e. the
second classifier is better at classifying those examples for
which the decision tree does not exhibit a good
performance). Thus, a heuristic based on the fuzzy
entropy to combine the operation of different classifiers
in order to improve the overall classification performance,
can be developed.

II. FUZZY CLASSIFICATION TREES

In this section we review the algorithm presented in [3] to
generate fuzzy classification trees by automatic induction
from a set of data. Each of the examples in the training set
consists of an ordered pair ),( �� \[ ,

where the first component is  the D-dimensional vector of
predictor variables, and the second component is the
classification label of the example. Each of the examples
belongs to one of K different classes. The starting point
used in [3]  is a CART decision tree [1].  In the CART
algorithm, the classification tree is grown using the Gini
impurity criterion to select the locally optimal splits at
each stage. The fully grown tree is later pruned to its near-
optimal size by minimizing a cost-complexity function.
The resulting binary  tree can be thought of as a hierarchy
of Boolean tests on the predictor variables. This series of
tests associate instances characterized by their vector of
attributes,[ , to the nodes making up the tree. In fact, a
node in the tree can be identified with the subset of
instances assigned to it by the hierarchical questionnaire.
It is thus possible to characterize node W  by a membership

function )([�µ , which expresses in an alternative way

the assignment of the examples: A value of the
membership function 1)( =µ �� [  indicates that the

instance characterized by the vector of attributes �[ is

assigned to node W  by the hierarchy of Boolean tests.

Conversely, a value 0 for the membership function
indicates that example �[ is not assigned to that node by

the tests. At the top of the hierarchy is the root node,
which has all examples assigned to it. In terms of the
degree of membership function, we have

������� � [[  ,1)( ∀=µ .                        (2.1)

Let us focus on the inner node �W . Asuming only ordinal

attributes are present, this node is split by the numerical
Boolean test

(2.2)

into two nodes. Examples for which Eq. (2.2) is true are
assigned to the left child node, � 	W . The remainder are

assigned to the right child node, � 
W .

The split at this inner node can be expressed in terms
of  membership functions in the child nodes
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The non-Boolean value of 1/2 generally does not obtain in
practice. The membership functions in (2.3) reflect the
assignment of examples to the child nodes: A membership
of 1 in one child means the example is assigned to that
node; by construction, the membership to the other child
node is zero.

The fuzzification procedure proposed in [3] consists in
replacing the crisp splits defined by (2.3) in the CART
tree by fuzzy sigmoidal splits of the form
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With this substitution, examples are assigned to both child
nodes with a real-valued (i.e. no longer Boolean) degree
of membership. It is therefore natural to identify the nodes
in the tree with a fuzzy set [9,10].

The sigmoidal fuzzy split has one extra parameter with
respect to the Boolean or crisp split.  This extra
parameter, �E , can be thought of as the inverse width of

the splitting region. This region is the band around the
splitting threshold where examples are assigned a
significant membership in both child nodes. As this
inverse width parameter tends to infinity (i.e. the width of
the splitting band goes to zero), the crisp split is recovered
from the fuzzy sigmoidal split
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The parameters of the fuzzy splits are determined by a
global optimization algorithm, which has been specified
in [3].

Once the parameters of the fuzzy splits have been
determined, we can compute { } T~l )( ∈µ [� , the real-valued

degrees of membership of example [  in the set of
terminal nodes of the tree, 7~ . The label �\  is the class

prediction given by terminal node �W . The classification

procedure consists of three steps
- For all terminal nodes of the tree, 7W � ~∈ ,

compute  )([�µ , the degree of membership of the

unclassified example [ to the leaf node �W , by

recursive application of  (2.5).

- Calculate the total weight assigned to each of the
classes by the classification tree
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- The final class label is obtained by the rule
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Besides information about the class label, the set of
weights associated to each class contains information
about the classification margins for the example in
question.  The correlation between margins and accuracy
of the classification is discussed in the following section.

III. CLASSIFICATION ERROR, FUZZY ENTROPY AND

MARGINS

Consider solving a classification problem with .�classes
by generating a fuzzy decision tree with the help of the
algorithm described in section II. The fuzzy nature of the
tests implies that all examples are assigned a non zero
probability to all nodes of the decision tree. This implies
that the classification of a given instance in a fuzzy tree is
made jointly by 7~ , the set of terminal nodes of the
decision tree.  The class assignments of the different
terminal nodes for a given example will generally be in
conflict. The more disparate these classification labels
are, the fuzzier the classification for that example will be.
The extent of this effect can be quantified by defining the
fuzzy entropy of an example [
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Large values of the fuzzy entropy indicate that the
classification is ambiguous, possibly erroneous, because
alternative class labels, other than the one selected by rule
(2.9), are given a significant weight. Expression (3.1) is
used to rank order the examples according to how fuzzy
their classification by this particular tree is, and therefore,
how uncertain the classification given by the tree is. Other
choices of the fuzzy entropy function (e.g. one involving
logarithms) are possible. They lead to similar ordering in
the examples. Hence, the observation that there is a strong

correlation between the degree of fuzziness of
classification of an example, as measured by this rank
ordering, and its misclassification rate does not depend on
the particular functional form chosen for the fuzzy
entropy function.

In summary, the fuzzy sigmoidal splits that are used in
a fuzzy classification tree introduce a natural measure of
the proximity of a given instance in the space of attributes
to the relevant splits.  Proximity to a split indicates that
the example is located in a region where classes may
coexist, which in turn implies that it is intrinsically more
difficult for the tree to classify those instances accurately.
Consequently, points with higher fuzzy entropy have a
smaller classification margin and are more likely to be
misclassified. Ranking a set of examples in terms of their
fuzzy entropy gives us a definition for their relative
margins and permits us to identify those examples for
which the classification error should be smaller than the
average error. The presence of this correlation and its
consequences will be explored in the following section,
devoted to experiments.

IV. EXPERIMENTS

In order to test the efficiency of fuzzy classification trees
and to validate the hypothesized relation between fuzzy
entropy, margins and accuracy of classification, we
perform a series of experiments on three different data
sets.

The first collection of experiments is carried out on
the Wisconsin Breast Cancer database [11]. In order to
assess the quality of the classification given by a fuzzy
decision tree N-fold cross-validation is used: The data is
randomly divided in N groups, with the precaution that
the class proportions are maintained approximately equal
in all sets. We then select one of the groups and use it as a
test set for the classifier generated from the remaining (N-
1) groups. The procedure is then repeated N times with
each of the cross-validation sets. In the experiments
realized, N is equal to 10.  The values reported in Table I
are averages over these 10 runs, with the standard
deviation reported between parentheses.

The first column of Table I displays the average
classification error achieved by a CART decision tree.
The second and third columns present the results for a
fuzzified CART tree generated according to the
prescription given in [3]. The optimization algorithm that
fixes the parameters of the fuzzy tree is run with different
values for the characteristic width of the fuzzy splits (see
[3] for details). In the second column we report the results
of the optimization selected by using solely the training
data, with the algorithm described in [3]. The third
column displays the results of the best of the
optimizations, as measured by the percent error on the test
set. This latter error is reported to assess the efficiency of
the heuristic procedure specified in [3] to select the best
split width values for the optimization. We observe that,
although there is some improvement of the classification
error by the fuzzification procedure, the results are far
from optimal, and further improvement in the selection
procedure of the best optimization result is needed.

The first line in the table corresponds to the original
tree. The second line of Table I displays the results
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obtained with a boosted tree, where extra weight has been
given to examples which have smaller margins, as
measured by their fuzzy entropy ranking. We observe that
whereas some small improvement of the classification can
be observed in the boosted crisp CART tree, the

performance of the optimized fuzzy classification tree
slightly deteriorates. A close examination of the fuzzy
trees generated in both cases shows that the examples
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misclassified tend to be the same ones. This observation
suggests that boosting will not improve the performance
of fuzzy classification trees, since one of the elements
necessary to the effectiveness of boosting methods is that
the tree become unstable as the weight of misclassified
training examples is increased. We conjecture that the
robustness of the classification given by the fuzzy tree
will almost certainly hinder the effectiveness of methods
such as bagging o boosting [5-8], which rely on the
instability of the decision trees.

A second set of experiments has been carried out for
the waveform (see Ref. [1] for a detailed description of
how to construct this synthetic data set) and the diabetes
data sets (UC Irvine Machine Learning Database
Repository [11]). The results reported are averages over
random partitions of the available data into separate test
and training sets. The standard deviation as estimated
from the experiments is given between parentheses. For
the diabetes problem the training set consists of 500
examples, and the test set of the remaining 268. The
waveform set is a synthetic data set proposed by Breiman
et al. [1]. We have used 300 examples for training and

5000 examples for testing. The results presented in Table
II (taken form Ref. [3]) illustrate the correlation  between
the fuzzy entropy and the classification error: The
examples are first ordered according to their fuzzy
entropy and subsequently, the error for each of the
quartiles in the test data is reported. It is apparent that the
lower quartiles exhibit a significantly smaller error rate
than the higher ones.

A different form of exhibiting this correlation is to
plot the cumulative error (measured as the fraction of the
total error) against the rank of points ordered according to
their fuzzy entropy. Under the hypothesis that the error
likelihood is not correlated with the fuzzy entropy of an
example, one should obtain approximately a straight line
with a unit slope. The slope of the actual curve at each
point multiplied by the global error rate is an estimate of
the local error rate. The results presented in Figs. 1 and 2
for the diabetes and the waveform databases, respectively,
show that both in the test and the training set the
accumulated error curve has a characteristic concave
form:



)LJXUH���� �Accumulated error vs. rank of points ordered
according to their fuzzy�entropy for the diabetes data set.



)LJXUH���� �Accumulated error vs. rank of points ordered
according to their fuzzy entropy for the waveform data set.

The curve starts off with a slope significantly lower than
one. The slope gradually increases and eventually
becomes larger than one as the abscissa approaches unity.
These features indicate that examples with low fuzzy
entropy have an error rate smaller than the average one.
By contrast, examples with high values for the fuzzy
entropy have a greater than average error rate.

9�� CONCLUSIONS

The classification of a given instance in a fuzzy decision
tree is a global process that involves all terminal nodes of
the tree. In fact, the hierarchy of fuzzy tests produces a
non-zero value for the degree of membership in all the
leaves of the tree. Each of these terminal nodes predicts a
different class label to the examples associated to it.
Hence, the class has to be determined by a voting method,
where the vote of a leaf node is weighted by the degree of
membership of the example in that node. This voting
procedure allows for a definition of classification margins
in terms of the fuzzy entropy. This quantity is a  measure
of how clear is the vote in favor of a class and therefore of
how confident we are on its classification. The conjecture
that small classification margins (large fuzzy entropy) are
correlated with the likelihood of misclassification is
corroborated in a series of experiments on different
standard databases. If the instances are ordered according
to their fuzzy entropy, and then we plot the accumulated
error vs. the rank of these points, the curve exhibits a
characteristic concave shape. The slope of this curve,
which rises from values smaller than one (points with
lower fuzzy entropy) to values larger than one (points
with higher fuzzy entropy),  is a measure of the local error
rate relative to the average error rate.

Although more experiments are needed, this work
suggests that the information provided by the estimates of
the margins does not seem to be useful in order to design
a boosting algorithm similar to AdaBoost [7].  A probable
reason for this behavior is the robustness of the
classification given by fuzzy decision tree, which implies
that the misclassified points are usually the same ones.
They all tend to have high fuzzy entropy irrespective of
the particular tree architecture generated by the fuzzy-
CART algorithm from the training data.

The experiments presented in this work prompt in a
number of directions. In particular, further research is
needed to address the following problems: There seems to
be some room for improvement in selection of the
optimized tree in the algorithm proposed in [3]. It would
also be desirable to have a quantitatively reliable relation
between the fuzzy entropy, or local margin, and an actual
measure of the local error rate. Finally, heuristics that
exploit the information contained in the classification
margins in order to improve the overall classification
performance ought to be developed.
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